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Introduction 

The 2018 California Current Ecosystem Survey (CCES) was conducted between 26 June and 4 

December 2018 as a joint project of the Marine Mammal and Turtle Division (MMTD) and the 

Fisheries Resources Division (FRD) of NOAA’s Southwest Fisheries Science Center (SWFSC). 

One of the primary objectives of this line-transect survey was to collect marine mammal sighting 

data to support the derivation of cetacean density estimates for the California Current Ecosystem 

(CCE) study area.  Given the heterogeneity of the 2018 survey coverage in the CCE study area 

(Henry et al. 2020), density estimation required model-based (rather than design-based) 

analytical approaches for updating population size estimates for US West Coast marine mammal 

stocks. This report summarizes the results of the cetacean habitat modeling effort.   

Habitat models, or species distribution models (SDMs), have been recognized as valuable tools 

for estimating the density and distribution of cetaceans and assessing potential impacts from a 

wide range of anthropogenic activities (e.g., Abrahms et al. 2019; Gilles et al. 2011; Goetz et al. 

2012; Hammond et al. 2013; Redfern et al. 2013). SDMs for cetaceans have been developed for 

US West Coast waters from systematic ship survey data collected by SWFSC since 1991 

(Barlow et al. 2009; Becker et al. 2010, 2014, 2016, 2018, 2020; Forney 2000; Forney et al. 

2012). The most recent models provide spatially-explicit density predictions at a 0.1˚ 

(approximately 10km x 10km) grid resolution (Becker et al. 2020), and multi-year average 

density surfaces have been used by the US Navy to assess potential impacts on cetaceans as 

required by US regulations such as the Marine Mammal Protection Act and Endangered Species 

Act (U.S. Department of the Navy 2013, 2015, 2017). 

The overall goal of this study was to include the 2018 survey data in the previous 1991–2014 

modeling dataset in order to improve SMDs for the CCE study area. Specific objectives 

included: 

• Generating multi-year average density surfaces for the Navy and others to use in their 

long-term (2–7 year) environmental planning efforts; and  

• Providing updated abundance and “minimum population size (Nmin)” estimates as 

defined in the Guidelines for Assessing Marine Mammal Stocks (National Oceanic and 

Atmospheric Administration 2016). 

To develop improved SDMs and to update US West Coast cetacean stock abundance estimates, 

sighting data from CCES 2018 were combined with previous line-transect survey data collected 

within the CCE to create a robust modeling database spanning more than 25 years (1991–2018). 

Habitat models were developed based on previously established methods that allow for the 

incorporation of segment-specific estimates of detection probability and included dynamic 

covariates from an ocean model calibrated to the CCE study area (Becker et al. 2016). In 

addition, recently-developed techniques for deriving more comprehensive estimates of 

uncertainty in SDM predictions (Miller et al. In Prep.) were used to provide variance estimates 

for the model-based abundance estimates. SDMs were developed for long-beaked common 

dolphin (Delphinus delphis bairdii), short-beaked common dolphin (Delphinus delphis delphis), 

Risso’s dolphin (Grampus griseus), Pacific white-sided dolphin (Lagenorhynchus obliquidens), 

northern right whale dolphin (Lissodelphis borealis), striped dolphin (Stenella coeruleoalba), 

common bottlenose dolphin (Tursiops truncatus), Dall’s porpoise (Phocoenoides dalli), sperm 
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whale (Physeter macrocephalus), blue whale (Balaenoptera musculus), fin whale (B. physalus), 

humpback whale (Megaptera novaeangliae), Baird’s beaked whale (Berardius bairdii), and a 

“small beaked whale guild” that included Mesoplodonts (Mesoplodon spp.) and Cuvier’s beaked 

whale (Ziphius cavirostris).  Sample sizes were also sufficient to develop the first model-based 

density estimates for minke whale (B. acutorostrata) in this study area. 

The habitat-based models of cetacean density developed in this study represent an improvement 

over the previous models described by Becker et al. (2020) because they included additional 

sighting data over the continental shelf and slope that were surveyed more sparsely in previous 

years, providing better representation of these important habitat regions.  In addition, the model-

based abundance estimates more accurately account for uncertainty than prior iterations owing to 

methodological improvements.  
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Methods 

Survey data 

Cetacean sighting data used to build the SDMs were collected within waters of the CCE from 

1991–2018 (Table 1) using line-transect methods (Buckland et al. 2001). The 1991–1993 surveys 

covered waters off the state of California while the 1996–2008 and 2014 surveys covered waters 

off the entire west coast of the United States, with all surveys extending approximately 300 

nautical miles offshore (Barlow and Forney 2007). The 2009 survey was a finer-scale survey that 

focused on waters off central and southern California, as well as the west coast of Baja 

California (Carretta et al. 2011). The 2018 survey covered waters along the west coasts of 

southern Canada (Vancouver Island), the west coast of the United States, and Baja California out 

to a distance of approximately 200 nautical miles offshore (Henry et al. 2020). When combined 

across years, the surveys provided comprehensive coverage of waters throughout the CCE study 

area, although the spatial heterogeneity of the 2018 survey is clearly apparent (Figure 1). Only 

on-effort data collected in Beaufort sea state conditions ≤5 within the study area were used in 

model development. 

The survey protocols were the same for all years (see Barlow 2006; Kinzey et al. 2000) and are 

briefly summarized here.  Each survey used a NOAA research vessel and a team of six 

experienced visual observers. For each rotation, three observers stationed on the flying bridge of 

the ship visually searched for and recorded cetacean sightings between 0 and 90 degree to port 

and starboard using standard line-transect protocols. Port and starboard observers searched with 

pedestal-mounted 25 × 150 binoculars and a center-stationed third observer searched by eye or 

with handheld 7 × 50 binoculars. When cetaceans were detected within 3 nautical miles (5.6 km) 

of the trackline, the sighting was recorded (along with distance and direction from the vessel, 

from which perpendicular sighting distance was calculated), and the ship would then typically 

divert from the transect line and go “off-effort” to approach the animals and enable more 

accurate estimation of group size and species identification. All observers independently 

provided best, high, and low group size estimates. If the sighting included more than one species, 

the observers also estimated the percentage of each species in the group. The best estimate from 

each observer or the best estimate multiplied by the percentage of each species was averaged 

(i.e., arithmetic mean) to obtain a single group size estimate for each sighting.  

Systematic survey effort was conducted along predetermined tracklines at a target survey speed 

of 18.5 km/hr. During transit between tracklines, transits to or from port, or deviations from pre-

determined tracklines for other purposes, the visual observers generally maintained standard data 

collection protocols. Although such non-systematic effort is generally not used to derive 

encounter rate for design-based density estimates, it is incorporated into the SDMs as the uneven 

distribution of effort can be accounted for within the statistical framework (Hedley and Buckland 

2004).   

Environmental predictor data 

To create samples for modeling, continuous portions of on-effort survey tracklines were divided 

into approximate 5-km segments using methods described by Becker et al. (2010). The total 

number of species-specific sightings and associated average group size estimates were assigned 

to each segment and habitat covariates were derived based on the segment’s geographical 
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midpoint. To maintain consistency with the species-specific effective-strip-width estimates 

derived for this study based on methods described in Barlow et al. (2011a) and used to estimate 

cetacean densities, sighting data were truncated at a distance of 5.5 km perpendicular to the 

trackline for the delphinids and large whales, 4.0 km for small whales (Mesoplodonts, minke 

whale, and Cuvier’s beaked whale), and at 3.0 km for Dall’s porpoise (Buckland et al. 2001).  

Environmental variables from a data-assimilative CCE implementation of the Regional Ocean 

Modeling System (ROMS), produced by the University of California Santa Cruz Ocean 

Modeling and Data Assimilation group (Moore et al. 2011), were used as dynamic predictors as 

they have proven effective in similar SDMs for this study area (Becker et al. 2016, 2018, 2020). 

Daily averages for each variable at the 0.1 degree (~10 km) horizontal resolution of the ROMS 

output were used in the models. The suite of potential dynamic predictors included sea surface 

temperature (SST) and its standard deviation (sd(SST)), calculated for a 3 × 3-pixel box around 

the modeling segment midpoint, mixed layer depth (MLD, defined by a 0.5˚C deviation from the 

SST), sea surface height (SSH), and sd(SSH).  Water depth (m) was also included as a potential 

predictor, derived from the ETOPO1 1-arc-min global relief model (Amante and Eakins 2009) 

and obtained for the midpoint of each transect segment. In addition, distance to the 200-m 

isobath derived from the geomorphic feature map of the global ocean (Harris et al. 2014) was 

included in model selection as it represents the edge of the shelf break for much of the U.S. west 

coast and can be a distinguishing habitat feature for many cetacean species (Becker et al. 2010; 

Fiedler et al. 1998, 2018). In addition, for those species known to primarily inhabit offshore 

waters (beaked whales, sperm whale, striped dolphin), distance to the 2,000-m isobath was also 

included in the list of potential predictor variables, as this depth roughly represents the transition 

from the continental slope to the continental rise. To differentiate continental shelf, slope, and 

rise waters, negative values of the distance to isobath terms were used for waters shallower than 

the 200m or 2,000m isobath. Although the modeling framework applied in our analysis (mgcv; 

see ‘Habitat Models’ section below) is robust to correlated variables (Wood 2008), distance to 

the two isobath terms and depth (absolute correlation = 0.75–0.85) were considered separately in 

the models to avoid any confounding effects. 

A spatial term (bivariate spline of longitude and latitude) was also included in the suite of 

potential predictors because SDMs that explicitly account for geographic effects have exhibited 

improved explanatory performance as they often account for unmeasured static variables that 

might be important for driving species distributions (Becker et al. 2018; Cañadas and Hammond 

2008; Forney et al. 2015; Hedley and Buckland 2004; Tynan et al. 2005; Williams et al. 2006). 

The inclusion of a spatial term can result in more robust models but invalidates predictions 

outside the study area.  

A continuous year term was also included as a potential predictor in the models to capture 

population trends both for species whose abundance has changed substantially during the time 

period considered in our analyses, and for species for which distribution shifts have resulted in 

abundance changes over time. For example, increases in population have been documented for 

both fin whale (Moore and Barlow 2011) and humpback whale (Barlow et al. 2011b), while 

notable shifts in distribution over the last few decades have resulted in a decline in the number of 

blue whales (Monnahan et al. 2015), and an increase in the number of short-beaked common 

dolphins (Barlow 2016; Becker et al. 2018) in the CCE study area. The degrees of freedom for 

the year term were constrained (i.e., < the maximum of 8 available) in order to capture linear or 
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thresholds in the response curves rather than simply tracking the variable encounter rates over 

the survey periods. In addition, since environmental covariates are often correlated with time, 

and year can serve as a proxy for unmeasured habitat variables, the functional forms of all the 

other dynamic variables were inspected during the modeling process to ensure they remained 

stable with the addition of the year term. 

Correction factors 

During CCES 2018, operational requirements necessitated that some of the effort be conducted 

in passing mode (i.e., when a cetacean/cetacean group is sighted the ship continues on course and 

is not diverted to the vicinity of the sighting for species identification or group size enumeration). 

This led to a high proportion of recorded “unidentified large whale” and “Delphinus spp.” 

sightings, when observers could not confirm which species of large whale or common dolphin 

subspecies was present, respectively. Omitting these sightings from the modeling dataset would 

have resulted in an underestimation of animal density for blue, fin, and humpback whales, as 

well as both long-and short-beaked common dolphins. To reduce this potential downward bias, 

species-specific correction factors were applied to account for unidentified animals, using the 

methods described in Becker et al. (2017) and summarized below. 

For both the large whale and common dolphin groups, the correction factor c was estimated from 

the 2018 sighting data according to the simplified formula:  

 (1) 

where ttgt is the number of individuals identified as the target species, toth is the number of 

individuals identified as other species within the broader species group, and tunid is the number of 

unidentified individuals in that species group. Due to the potential effect of Beaufort sea state on 

detectability (Barlow et al. 2001, 2011a; Barlow 2015), the correction factors were evaluated to 

determine if they varied by sea state. If so, separate correction factors were developed by sea 

state; otherwise a single correction factor was applied. The correction factors were applied to the 

numbers of animals estimated per segment in the SDMs for the common dolphin and large whale 

species (see equation 2 below).  

The protocol for estimating sperm whale group size changed over the course of the 1991–2018 

survey period, with less effort spent estimating group size during the three surveys conducted in 

the 1990’s. Group size estimates for larger sperm whale groups (> 2 animals) are now known to 

have been underestimated in the earlier surveys, and a correction factor has been estimated to 

account for this bias (Moore and Barlow 2014). Prior to modeling, this correction factor (2.3x) 

was applied to the average group size estimates for observed sperm whale group sizes > 2 for the 

1991–1996 surveys. No group size corrections were applied to the other species. 

Habitat models 

Generalized Additive Models (GAM; Wood 2017) were developed in R (v. 3.4.1; R Core Team, 

2017) using the package “mgcv” (v. 1.8-31; Wood 2011). Methods largely followed those 

described in Becker et al. (2016) and are summarized here. One of two modeling frameworks 

was used for each species, depending on its group size characteristics. For the two Delphinus 
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species that have very large and variable group sizes (e.g., 1 to 2,000 animals per sighting), 

separate encounter rate and group size models were developed. Encounter rate models were built 

using all transect segments, regardless of whether they included sightings, using the number of 

sightings per segment as the response variable and a Tweedie distribution to account for 

overdispersion (Miller et al. 2013). Group size models were built using only those segments that 

included sightings, using the natural log of group size as the response variable, and a Gaussian 

link function. For the rest of the species, GAMs were fit using the number of individuals of the 

given species per transect segment as the response variable using all transect segments, and a 

Tweedie distribution to account for overdispersion. The full suite of potential habitat predictors 

was offered to both the encounter rate and single response GAMs. A tensor product smooth of 

latitude and longitude (Wood 2003) was the only predictor variable included in the Delphinus 

group size models.  

In all models, restricted maximum likelihood (REML) was used to obtain parameter estimates 

(Marra and Wood 2011). The shrinkage approach of Marra and Wood (2011) was used to 

potentially remove terms from each model by modifying the smoothing penalty, allowing the 

smooth effect to be shrunk to zero. Additionally, to avoid overfitting, an iterative 

forwards/backwards selection process was used to remove variables that had P-values > 0.05 

(Redfern et al. 2017; Roberts et al. 2016). The natural log of the effective area searched 

(described below) was included as an offset in both the single response and encounter rate 

models. 

Predictions from the final model were incorporated into the standard line-transect equation 

(Buckland et al. 2001) to estimate density (D; number of animals per km2): 

 (2) 

where i is the segment, n is the number of sightings on segment i, s is the average group size 

(i.e., number of a given species present in a group) on segment i, c is the species-specific 

correction factor for unidentified common dolphins or large whales (derived in equation 1 and 

assumed to be 1 for all other species) based on sea state conditions on segment i, and A is the 

effective area searched for segment i: 

 (3) 

where Li is the length of the effort segment i, ESWi is the effective strip half-width, and g(0)i is 

the probability of detection on the transect line. Following the methods of Becker et al. (2016), 

species-specific and segment-specific estimates of both ESW and g(0) were incorporated into the 

models based on the recorded detection conditions on that segment and using coefficients 

estimated specifically for the CCE dataset based on methods of Barlow et al. (2011a) for ESW 

and Barlow (2015) for g(0). For those segments where the average Beaufort sea state was 0 (< 

1% of the segments), g(0) was assumed to be 1, i.e., that all animals directly on the transect line 

were detected, for all species except Cuvier’s beaked whale (g(0)  = 0.584) and Mesoplodon spp. 

(g(0)  = 0.813), which were <1 based on dive behavior (Barlow 2015). 

In equation (3) above, the effective area searched is multiplied by two to account for observers 

searching on both sides of the transect line. During the 2018 survey, coastal fog and other 
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conditions occasionally prohibited visual observations on one side of the ship, so that cetacean 

sighting data were collected on only one side of the transect line. These portions of reduced 

effort were systematically recorded in the dataset and the effective area searched was reduced 

accordingly along these segments, i.e., the constant was changed to a “1” in equation (3) above. 

Model performance was evaluated using established metrics, including the percentage of 

explained deviance, the area under the receiver operating characteristic curve (AUC; Fawcett 

2006), the true skill statistic (TSS; Allouche et al. 2006),  and visual inspection of predicted and 

observed distributions during the 1991–2018 cetacean surveys (Barlow et al. 2009; Becker et al. 

2010, 2016; Forney et al. 2012). AUC measures the accuracy of predicting observed presences 

and absences; values range from 0 to 1, where a score > 0.5 indicates better than random skill. 

TSS accounts for both false negative and false positive errors and ranges from -1 to +1, where +1 

indicates perfect agreement and values of zero or less indicate a performance no better than 

random. To calculate TSS, the sensitivity-specificity sum maximization approach (Liu et al. 

2005) was used to obtain thresholds for species presence. In addition, the model-based 

abundance estimates for the CCE study area based on the sum of individual modeling segment 

predictions were compared to standard line-transect estimates derived from the same dataset used 

for modeling in order to assess potential bias in the habitat-based model predictions. The 

standard line-transect estimates were derived from the 1991–2018 survey data using equations 

(2) and (3) above, but without the inclusion of habitat predictors (i.e., observed rather than 

predicted densities).  

Spatially-explicit density values for the CCE study area were derived from model predictions on 

the environmental conditions specific to the 1991–2018 CCE effort periods at a 0.1˚ 

(approximately 10km x 10km) grid resolution. Model predictions were made on separate 

environmental conditions for each day encompassing the survey periods, thus taking into account 

the varying oceanographic conditions during the 1991–2018 cetacean surveys. The separate daily 

predictions thus provide a dataset from which averages can be derived for any temporal period of 

interest. In past years, the Navy has used a “multi-year average” of predicted daily cetacean 

species densities to assess potential impacts on cetaceans as required by U.S. regulations such as 

the MMPA and ESA (U.S. Department of the Navy 2015, 2017). To ensure that the multi-year 

average reflects more recent conditions and is based on those survey years that more 

comprehensively covered the study area, predictions for 1991, 1993, and 2009 were not included 

in the multi-year average.  Further, for the two species with documented population increases in 

the study area (i.e., fin and humpback whales), the year covariate was set to 2018 to decrease the 

potential for biased-low density estimates derived from the multi-year average surfaces. The 

daily predictions were also used to create individual yearly averages for 1996–2018. The 

prediction grid was clipped to the boundaries of the approximate 1,141,800-km2 study area to 

ensure that predictions were not extrapolated outside the region used for model development. 

The model-based abundance estimates were calculated as the sum of the individual grid cell 

abundance estimates, which were derived by multiplying the cell area (in km2) by the predicted 

grid cell density, exclusive of any portions of the cells located outside the CCE study area or on 

land. Area calculations were completed using the R packages geosphere and gpclib in R (version 

2.15.0).  
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In highly dynamic ecosystems such as the California Current, variation in environmental 

conditions has been shown to be one of the greatest sources of uncertainty when predicting 

density as a function of habitat variables, and this source has been used to provide spatially-

explicit variance measures for past CCE SDM model predictions (Barlow et al. 2009; Becker et 

al. 2016, 2018, 2020; Forney et al. 2012). Recently, Miller et al. (In Prep.) developed techniques 

for deriving more comprehensive measures of uncertainty in GAM predictions that, in addition 

to environmental variability, also account for the uncertainty from the GAM parameters, ESW, 

and g(0). These techniques include generating multiple daily density surfaces taking into account 

model parameter uncertainty and providing a range of density estimates from which variance can 

be calculated.  

Preliminary analyses in our study, however, revealed that the simulated model parameter draws 

can – for some species – result in a subset of unrealistic simulated surfaces (i.e., surfaces that 

infer high densities of a species in habitats where the species is not generally found), so this 

method was not yet deemed suitable for estimating spatially explicit uncertainty estimates for the 

pixel-based densities.  The method did, however, confirm that environmental variability 

contributes the most substantial source of uncertainty in the CCE model predictions.  Therefore, 

the methods of Becker et al. (2016, 2018) were applied to estimate spatially-explicit measures of 

uncertainty based on environmental variability, calculated as pixel-specific standard errors using 

the set of daily predictions that went into the multi-year average density estimates.  The pixel-

based variance estimates are thus under-estimated to some degree, but the dominant source of 

uncertainty (environmental variability) was accounted for.  

The methods described in Miller et al. (In Prep.) were found to be suitable for estimating 

uncertainty in the overall model-based abundances for the entire CCE study area, and thus were 

used to derive variance estimates that included the combined uncertainty from environmental 

variability, the GAM parameters, and ESW. Study area variance was estimated based on the 

average values of each of the 200 simulations within each year, thereby providing an overall 

measure of uncertainty associated with the individual yearly average density surfaces for 1996–

2018. One additional source of uncertainty in abundance estimates is introduced by g(0), the 

probability of detecting animals directly on the trackline. The estimates of g(0) developed by 

Barlow (2015) are based on segment-specific Beaufort sea state conditions, but they were not 

compatible with the Miller et al. (In Prep.) methods of incorporating g(0); therefore, this source 

of uncertainty was handled separately. An overall estimate of uncertainty in g(0) was derived 

using the variance estimates for this parameter weighted by the proportion of survey effort 

conducted within each of the Beaufort sea state categories and estimated based on 10,000 

bootstrap values. Barlow (2015) did not provide g(0) estimates for northern right whale dolphin, 

and the result for Pacific white-sided dolphin was considered an outlier (Barlow 2015), so for 

both species the g(0) estimates for Delphinus spp. were used.  Delphinus spp. was considered a 

suitable surrogate for Pacific white-sided dolphin since they have similar sighting characteristics. 

In addition, the Delphinus spp. g(0) values were similar to the average of all the delphinids and 

were thus selected as a surrogate for northern right whale dolphin as well. The weighted g(0) 

uncertainty was combined into the study area variance estimates using the delta method (Seber 

1982).  

For purposes of calculating Potential Biological Removal (PBR) of US West Coast cetacean 

stocks, the pooled average of the 2014 and 2018 model-predicted study area abundance estimates 
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and associated variance estimates, as well as minimum abundance estimates, were also 

calculated (National Oceanic and Atmospheric Administration 2016). Abundance estimates were 

based on the arithmetic mean of the model-predicted estimates for 2014 and 2018. Study area 

variance was estimated based on the methods described above for individual years but including 

data specific to 2014 and 2018.  
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Results 

Habitat-based density models were developed for 14 species and one guild (Mesoplodonts and 

Cuvier’s beaked whale) using 92,214 km of on-effort survey data collected between 1991 and 

2018 within the CCE study area. The number of sightings within the species-specific truncation 

distances and available for modeling ranged from 39 to 1,034 (Table 2). 

Correction factors for unidentified large whales were applied separately by Beaufort sea state for 

the 2018 blue, fin, and humpback whale sightings, because the proportion of unidentified whales 

increased with increasing sea state. For blue and humpback whales, these correction factors were 

1.03, 1.04, 1.05, 1.20, and 1.26 for Beaufort sea states 0-1, 2, 3, 4, and 5, respectively, and 1.04, 

1.08, 1.10, 1.30, and 1.46 for fin whales. For the common dolphin group, higher multipliers were 

not associated with higher sea states, so a uniform correction factor of 1.71 was applied across all 

sea states for the 2018 sightings of both long- and short-beaked common dolphins. 

Consistent with past modeling studies in the CCE study area (Becker et al. 2016, 2018, 2020), 

the most commonly selected predictor variables for the encounter rate models of groups (long- 

and short-beaked common dolphins) or individuals (all other species) included SST, MLD, and 

the smooth of latitude and longitude (Table 3). SSH and depth were also selected in many of the 

models. The group size model for both subspecies of common dolphin included a bivariate spline 

of longitude and latitude, consistent with other studies that have demonstrated significant spatial 

variation in group size, particularly for Delphinids (Barlow 2015; Ferguson et al. 2006). The 

functional forms of the key predictor variables were also consistent with those of SDMs built 

with subsets of the modeling dataset used for this study (Becker et al. 2016, 2018, 2020; 

Appendix A). 

A year covariate was included in the final fin and humpback whale models, and both captured 

the documented increasing population trends for these species in the CCE study area (Moore and 

Barlow 2011; Barlow et al. 2011a; Calambokidis et al. 2017). A year term was also included in 

the models for short-beaked common dolphin and blue whale, consistent with observed northern 

shifts in the relative distribution of these two species that have resulted in increasing numbers of 

short-beaked common dolphins and decreasing numbers of blue whales in the CCE study area 

(Barlow 2016; Becker et al. 2018; Monnahan et al. 2015). A year term was also included in the 

SDMs for Risso’s, striped, and common bottlenose dolphins, as well as Dall’s porpoise (Table 

3). The functional forms for the year term in all but the striped dolphin model suggest a 

decreasing trend in the numbers of these species in the CCE study area during the course of the 

survey period (Appendix A). For all three species, year represents a significant but very small 

effect as indicated by the range of values on the y-axis (i.e., relative to the other covariates the y-

axis value for year is <1; Figures A3,A7, A8). The functional form of the year term in the striped 

dolphin model fluctuates throughout the 1991–2018 survey period (Figure A6), consistent with 

the highly variable abundance estimates for this species for each of the individual survey years 

(Barlow 2016; Becker et al. 2018). 

Deviance explained by the models was variable, ranging from approximately 7% to 57% (Table 

3). With the exception of sperm whale, AUC values for all models were greater than 0.7 and the 

majority were greater than 0.8, indicating that the models did a good job predicting true positives 

and negatives. The TSS values, which account for both omission and commission errors, were 
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more variable, ranging from 0.18 (sperm whale) to 0.90 (long-beaked common dolphin). All 

models had observed: predicted density ratios higher than 0.7, with the majority higher than 0.9, 

indicating that the sum of the segment-based density predictions captured overall abundance in 

the study area as derived from design-based line-transect methods. 

The 1996–2018 multi-year average density surface maps generally captured observed 

distribution patterns as illustrated by actual sightings during the surveys (Figure 2). For the two 

species with documented population increases in the study area (i.e., fin and humpback whales), 

the density estimates were scaled to the 2018 abundance to decrease the potential for biased-low 

density estimates derived from the multi-year average surfaces (Figures 2l and 2m). The CVs, 

which were based on the environmental variability of the daily predictions, showed substantial 

variation among the species, with a few individual pixel values as high as 6.0 (e.g., common 

bottlenose dolphin and fin whale, Figures 2g and 2l). 

The yearly average density surface maps show high annual variability for some species (e.g., 

short-beaked common dolphin, striped dolphin, Dall’s porpoise, blue whale, fin whale) and less 

so for other species (e.g., minke whale, Baird’s beaked whale) (Figure 3). There is almost no 

variability in the yearly density plots for sperm whale (Figure 3i), due to the overwhelming 

contribution of the distance to 2,000m isobath term. The pixel-based CVs were generally highest 

in 2005, suggesting that there was substantial variability in the habitat covariates within this year. 

For the majority of the species, the yearly sightings match well with the density predictions. 

However, given the heterogeneity of survey coverage in 2018, sighting data from this survey are 

not as useful for cross validation since survey coverage needs to be taken into account when 

assessing the accuracy of the density predictions. For example, the models for both short-beaked 

common and striped dolphins predict high density in the southwestern portion of the CCE study 

area in 2018 (Figures 3b and 3f), where there was no survey effort (Figure 1).  

The model-based yearly abundance estimates were highly variable for the majority of the species 

considered here, particularly for those with documented trends due to either changes in 

abundance or shifts in distribution (i.e., fin, humpback, and blue whales, and short-beaked 

common dolphin; Table 4). Even for those species for which a year term did not enter the model, 

substantial variability in the annual model-predicted abundance values were apparent, 

particularly for the most recent survey years (e.g., long-beaked common dolphin, northern right 

whale dolphin, Baird’s beaked whale). Interestingly, the most stable mean abundance estimates 

over the 1991–2018 survey period were for sperm whale and the small beaked whale guild 

(Table 4), the two SMDs that generally had the worst performance metrics among all the species 

models (Table 3). 

Four sources of uncertainty (i.e., environmental variability, GAM parameters, ESW, and g(0)) 

were combined to provide an overall measure of variance for the model-based study area 

abundance estimates (Table 4). Uncertainty estimates from the combination of environmental 

variability, GAM parameters, and ESW estimates (“CVm (Model)” in Table 4) were variable, 

ranging from 0.078 for sperm whale to 0.782 for northern right whale dolphin. The final model 

for sperm whale included only two predictors, of which one was dynamic (Table 3), so the low 

“Model” CVs are likely due to low parameter variability.  Conversely, the final model for 

northern right whale dolphin included five predictors with large standard error bands around four 

(Table 3 and Figure A-5), resulting in high variability in the parameter simulations used to derive 
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the variance estimates. Uncertainty due to the Beaufort-weighted g(0) values was quite high for 

many of the species, particularly Dall’s porpoise (CV = 0.518) and minke whale (CV = 0.787). 

When combined, overall measures of CV for the study area abundance estimates were highly 

variable among the species, ranging from 0.127 (Risso’s dolphin) to 0.799 (minke whale). 

Similar to the yearly estimates, CVs for the pooled 2014 and 2018 abundance estimates were 

also variable among species (Table 5). 
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Discussion and Conclusions 

During the last 20 years, subsets of the 1991–2018 SWFSC survey data have been used to model 

the relationship between habitat predictors and species density, both to improve abundance 

estimates and to gain valuable insight on spatial and temporal changes in species distributions 

(Barlow et al. 2009; Becker et al. 2010, 2014, 2016, 2018, 2020; Forney 2000; Forney et al. 

2012). With each added year of survey data, the models for most species have become more 

robust, as increased numbers of sightings collected over a broader range of oceanic conditions 

have been able to better inform the models. The key functional forms for many of the species 

have become stable over time, suggesting that at this decadal temporal scale relationships with 

certain habitat predictors have not changed, despite changing oceanic conditions (e.g., Becker et 

al. 2018).  For example, the functional form of SST in the Dall’s porpoise GAM consistently 

shows a threshold effect at approximately 16°C (Figure A8), apparent in previous GAMs built 

with only the 1991 and 1996 survey data (Forney 2000). The relationship between SST and fin 

whale density has also remained constant throughout the 1991 to 2018 period, with the highest 

densities of whales in waters between about 14°C and 18°C (Figure A12), consistent with GAMs 

developed with only four years of survey data (1991–2001; Becker et al. 2010). Although high 

seasonal and interannual variability in cetacean abundance and distribution patterns have been 

observed and predicted from habitat models developed for the CCE study area (Barlow and 

Forney 2007; Becker et al. 2014, 2017, 2018; Forney and Barlow 1998; Forney et al. 2012), the 

multi-year average density plots for the majority of species are broadly similar over the 1991–

2018 time period, demonstrating consistency in “average” distribution patterns. These density 

estimates represent a composite view for the summer/fall survey months (typically July through 

November) and should not be extrapolated outside of these seasons, given the seasonality of the 

California Current Ecosystem. 

Since a main objective of this study was to produce robust average multi-year density surfaces, a 

bivariate spline of longitude and latitude was included in the SDMs to increase their explanatory 

performance (Cañadas and Hammond 2008; Forney et al. 2015; Hedley and Buckland 2004; 

Tynan et al. 2005; Williams et al. 2006). As Becker et al. (2018) demonstrated, however, for 

many species the inclusion of a spatial term does not improve a model’s novel predictive power, 

suggesting that these models may not provide the best nowcasts or forecasts. 

For Risso’s dolphin, sperm whale, and the small beaked whale guild, previous SDMs have not 

performed well, and there has generally been poor correlation between predicted density patterns 

and the sighting data used to build the models (Becker et al. 2010, 2020; Forney et al. 2012). 

Sightings of Risso’s dolphins within the CCE study area are concentrated either along the 

continental shelf (mainly south of 38°N) or in offshore deep waters, with a distinct longitudinal 

absence between these two areas (Barlow 2016; Barlow and Forney 2007). In the present study, 

this observed spatial pattern was captured quite well (Figure 2c), likely due to the addition of the 

CCES 2018 survey data, which contributed an additional 39 sightings to the modeling dataset 

and provided improved sampling of the continental shelf habitat.   

Conversely, models for both sperm whale and the small beaked whale guild showed little to no 

improvement, with some of the worst model metrics among all species and predicted distribution 

patterns that match poorly to actual sightings during the surveys (Table 3, Figures 2h, 2n). The 

addition of the CCES 2018 survey data did not improve either of these models, likely due to the 
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very sparse sampling of offshore waters where both sperm and small beaked whales are typically 

found. These results also suggest that the current suite of environmental variables offered to the 

models are not effective proxies for their habitat and prey. Model improvements for these deep-

diving species may only be realized by identifying an available proxy that better captures the 

ecological processes driving their distribution or by using alternative data (e.g., acoustics) for 

model input.  

Unlike previous modeling efforts where a year term was considered only for those species with 

documented population increases or decreases in the CCE study area, a year term was included 

in the list of potential predictors for all the SDMs in this study. To ensure that year did not 

simply track the variable encounter rates over the 1991–2018 survey period, this term was 

constrained (i.e., the degrees of freedom were reduced) in the GAMs in order to identify a trend 

or threshold effect. Consistent with past modeling efforts, the year term entered the SDMs for 

those species with documented increases in population in the study area (fin and humpback 

whales; Moore and Barlow 2011; Barlow et al. 2011a; Calambokidis et al. 2017) and for those 

species with documented distribution shifts that have resulted in substantial changes in the 

number of animals present in the study area (blue whale and short-beaked common dolphin; 

Barlow 2016; Becker et al. 2018; Monnahan et al. 2015). A year term was also included in the 

striped dolphin GAM, indicating flucutating numbers of this species in the study area over the 

survey period (Figure A6). This result is consistent with past studies that suggest that available 

striped dolphin habitat fluctuates substantially with changing ocean conditions (Barlow 2016; 

Becker et al. 2018, 2020), and since the range of this species extends continuously from the 

study area south to waters offshore Mexico (Perrin et al. 1985; Mangels and Gerrodette 1994), 

there can be a large increase or decrease of animals in the study area in any single year. 

A year term was also included in the models for Risso’s dolphin, common bottlenose dolphin, 

and Dall’s porpoise, suggesting a decreasing trend in the numbers of these species in the CCE 

study area during the course of the survey period (Figures A3, A7, A8). A negative year trend 

indicates that the numbers of these species in the study area has decreased either due to a true 

change in population or to a distribution shift out of the study area. Boyd et al. (2018) 

demonstrated that the amount of suitable Dall’s porpoise habitat within the CCE study area 

changed substantially during the 1991–2008 survey period, so perhaps this could be driving the 

apparent decrease in numbers of this species over time. The yearly density predictions for Dall’s 

porpoise do not appear consistent with a shift in distribution to the north, however, but rather 

imply a contraction of suitable habitat centered off Oregon and northern California (Figure 3h). 

Bayesian hierarchical approaches have been used to improve population trend analyses for fin, 

sperm, and beaked whales in the CCE (Moore and Barlow 2011, 2014, 2017). Similar trend 

analyses that incorporate the additional 2018 survey data are needed to resolve what is driving 

the apparent decrease in abundance indicated by the GAMs for Risso’s dolphin, common 

bottlenose dolphin, and Dall’s porpoise.  

 

The modeling framework used in the present analysis was largely the same as that used in 

Becker et al. (2016), but incorporated updated measures of uncertainty in the study area 

abundance estimates based on a modification of the methods described in Miller et al. (In Prep.). 

This is an improvement from past studies that only accounted for uncertainty due to 

environmental variability. Uncertainty estimates for the overall study-area abundance estimates 

based on the combined sources of environmental variability, GAM parameters, and ESW were 
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generally lower for species with high sighting numbers and lower variability in encounter rates 

such as short-beaked common dolphin, Dall’s porpoise, and blue, fin, and humpback whales 

(Table 4). Uncertainty due to the Beaufort-weighted g(0) values was quite high for many of the 

species, and served to increase uncertainty in the overall study area abundance estimates. This is 

not surprising given the nontrivial uncertainty estimates associated with the Beaufort-specific 

g(0) values calculated by Barlow (2015) and used in this study. Similar to past studies, the pixel-

based variance estimates presented here account for uncertainty due to environmental variability 

and are thus under-estimated to some degree. Methods to derive spatially-explicit variance 

measures that also account for uncertainty in the GAM parameters, ESW, and g(0) are currently 

in development (Miller et al. In Prep.). 

For all species, abundance estimates derived from the habitat-based models are more stable than 

previous design-based estimates for each of the 1996–2014 survey years (Barlow 2016). Design-

based estimates are based on the realized encounter rates within each year, and are thus subject 

to high variation due to sampling error and patchiness in both the environment and animal 

distribution. This generally results in highly variable single year abundance estimates that often 

appear inconsistent with long-term trends in animal abundance (Moore and Barlow 2014). 

Conversely, habitat models establish relationships between environmental predictors and species 

density based on the full, multi-year dataset, and yearly abundance estimates derived from the 

models are based on the temporally-specific environmental conditions throughout the study area, 

thus serving to smooth across the annual variation in observed encounter rates along transect 

lines. This results in less variability in model-based abundance estimates between years, as much 

of the remaining variance is largely attributed to environmental variability rather than to low 

single year sample size (Barlow et al. 2009; Forney et al. 2012). The most variable yearly 

design-based estimates are thus typically for those species with the highest variation in encounter 

rates (Barlow 2016), and these tend to differ most from the more stable model-based estimates 

(e.g., common bottlenose dolphin, Table 4).  

GAMs are able to effectively deal with spatial heterogeneity of survey coverage within the 

statistical framework (Hedley and Buckland 2004), and thus the CCES 2018 survey contributed 

valuable data to the CCE modeling dataset and allowed for population size updates for many of 

the US West Coast cetacean stocks. Offshore waters were undersampled, however, and SDMs 

for species that primarily inhabit these regions did not improve with the addition of the CCES 

2018 data (i.e., sperm whale, beaked whales). One of the greatest strengths of the SWFSC 

dataset is the broad, consistent survey coverage of the CCE study area over multiple years, which 

has supported novel analyses and methodological improvements in SDM development. For 

example, the SWFSC CCE dataset has supported the evaluation of different modeling 

approaches, different sampling scales, different interpolation methods, and different sources of 

habitat data (Barlow et al. 2009; Becker et al. 2010, 2016, 2020; Forney et al. 2012; Redfern et 

al. 2008). This extensive dataset has also supported studies evaluating the predictive ability of 

SDMs to provide nowcasts, forecasts, and across-season predictions (Becker et al. 2012, 2014, 

2018), as well as allow for robust trend analyses (Moore and Barlow 2011, 2014, 2017). While 

systematic regional surveys or those that cover only portions of the CCE study area provide 

valuable data, routine survey coverage of the full study area is required to maintain and increase 

the utility of this unique dataset. 
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As additional data are collected on future surveys, model improvements are expected to 

continue, both from increased sample sizes and ideally from surveys conducted in more 

anomalous conditions that will allow for an even broader range of habitat conditions to be 

represented. Model improvements are also expected from the availability of additional habitat 

variables that are more relevant to the cetaceans than the proxy variables used here. 

Improvements to ocean model products may in turn produce more robust cetacean SDMs, 

particularly if the ocean model outputs can be produced at finer spatial resolutions. Continued 

methodological improvements are also expected, with active research aimed at developing robust 

methods for combining data from different sources, e.g., visual line-transect, passive acoustics, 

tagging data, etc. For those species that exhibit substantial distribution shifts in and out of the 

CCE study area, e.g., striped dolphin, long-beaked common dolphin, and Dall’s porpoise (Becker 

et al 2018; Boyd et al. 2018; Carretta et al. 2011), SDMs that incorporate survey data that better 

sample the broader distribution range of these species should provide greater insight into 

observed abundance changes within the study area. SDMs that incorporate data from portions of 

the CCES 2018 survey that covered waters along the west coasts of southern Canada and Baja 

California will help in this regard, and SDMs for waters off Baja California are currently in 

development. 
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Tables 

Table 1. Cetacean and ecosystem assessment surveys and effort conducted within the 
California Current Ecosystem study area during 1991–2018. CA/OR/WA = 
California/Oregon/Washington, CenCA = central California, SoCA = southern California, 
Baja = Baja California. DSJ = David Starr Jordan. 

Cruise numbers Period Research vessel Region 

1426 Jul-Nov 1991 McArthur California 

1508/1509 Jul-Nov 1993 McArthur/DSJ California 

1604/1605 Jul-Nov 1996 McArthur/DSJ CA/OR/WA 

1617/1619 Jul-Dec 2001 McArthur/DSJ CA/OR/WA 

1627/1628 June-Dec 2005 McArthur II/DSJ CA/OR/WA 

1642 Jul-Nov 2008 McArthur II CA/OR/WA 

1635 Sept-Dec 2009 McArthur II CenCA/SoCAL/Baja 

1647 Aug-Dec 2014 Ocean Starr* CA/OR/WA 

2017 June-Dec 2018 Reuben Lasker Canada/CA/OR/WA/Baja  

*Previously the David Starr Jordan 

 

Table 2. Number of sightings and average group size (Avg. GS) of cetacean species 
observed in the California Current Ecosystem study area during the 1991–2018 
shipboard surveys for which habitat-based density models were developed. All sightings 
were made while on systematic and non-systematic effort in Beaufort sea states ≤5 
within the species-specific truncation distances (see text for details). 

Common name Taxonomic name 
No. of 

sightings 
Avg. GS 

Long-beaked common dolphin Delphinus delphis bairdii 160 291.82 

Short-beaked common dolphin Delphinus delphis delphis 1,034 155.73 

Risso’s dolphin Grampus griseus 249 18.57 

Pacific white-sided dolphin Lagenorhynchus obliquidens 296 54.70 

Northern right whale dolphin  Lissodelphis borealis 147 45.31 

Striped dolphin Stenella coeruleoalba 153 39.38 

Common bottlenose dolphin Tursiops truncatus 66 14.48 

Dall’s porpoise Phocoenoides dalli 678 3.72 

Sperm whale Physeter macrocephalus 105 6.67 

Minke whale Balaenoptera acutostrata 49 1.13 

Blue whale Balaenoptera musculus 316 1.66 

Fin whale Balaenoptera physalus 558 2.06 

Humpback whale Megaptera novaeangliae 967 1.70 

Baird’s beaked whale Berardius bairdii 39 7.46 

Small beaked whale guild Mesoplodon spp. & Ziphius cavirostris 92 2.12 
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Table 3. Summary of the final models built with the 1991–2018 survey data. Variables are 
listed in the order of their significance and are as follows: SST = sea surface 
temperature, SSTsd = standard deviation of SST, MLD = mixed layer depth, SSH = sea 
surface height, SSHsd = standard deviation of SSH, depth = bathymetric depth, shelf= 
distance to shelf, d2000=distance to the 2,000m isobath, LON = longitude, and LAT = 
latitude. Separate encounter rate (ER) and group size (GS) models were built for long- 
and short-beaked common dolphins due to large and variable group sizes. All single 
response and encounter rate models were corrected for effort with an offset for the 
effective area searched (see text for details). Performance metrics included the 
percentage of explained deviance (Expl. Dev.), the area under the receiver operating 
characteristic curve (AUC), the true skill statistic (TSS), and the ratio of observed to 
predicted density for the study area (Obs:Pred). 

Species Predictor variables Expl.Dev. AUC TSS Obs:Pred 

Long-beaked common dolphin     
 ER: LON:LAT + SST + SSHsd + SSH 52.50 0.98 0.90 0.95 

 GS: LON:LAT  6.55   
 

Short-beaked common dolphin    
 

  ER: LON:LAT + year + SST + SSH + MLD  17.00 0.77 0.40 0.95 
 GS: LON:LAT  11.10  

 
 

Risso's dolphin     
 LON:LAT +  SST + MLD + year + SSTsd 22.40 0.76 0.41 0.87 

Pacific white-sided dophin     
 LON:LAT  + shelf + SST + SSH + MLD 51.70 0.87 0.62 0.86 

Northern right whale dolphin     
 LON:LAT + SST + depth + MLD + SSTsd 44.40 0.83 0.51 0.92 

Striped dolphin     
 depth + LON:LAT + SST + year + MLD 33.20 0.76 0.41 0.72 

Common bottlenose dolphin     
 LON:LAT + MLD + SSTsd + SST + year 51.20 0.92 0.74 0.94 

Dall's porpoise     

 LON:LAT + SSH + year + SST + SSHsd + SSTsd 32.20 0.89 0.63 0.95 

Sperm whale     

 d2000 + MLD 13.30 0.61 0.17 0.91 

Minke whale     
 shelf + SST + LON:LAT 7.73 0.85 0.59 1.00 

Blue whale     
 LON:LAT + year + SSH + depth + SST + MLD 23.90 0.78 0.42 0.94 

Fin whale     
 LON:LAT + SST + SSH + year + MLD + depth 22.40 0.75 0.39 0.88 

Humpback whale     
 LON:LAT + year + depth + SST + MLD 57.40 0.94 0.75 0.98 

Baird's beaked whale     

 LON:LAT + depth + MLD + SSH 46.00 0.90 0.65 0.96 

Small beaked whale guild     

 shelf + MLD + SST +  LON:LAT  8.19 0.73 0.39 0.97 
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Table 4. Annual model-predicted mean estimates of abundance, density (animals km-2), 
and corresponding coefficient of variation (CV) within the CCE study area. Annual 
estimates are predicted from the full model using the habitat characteristics in that year. 
CVm (Model) represents the combined uncertainty from three sources: GAM parameters, 
ESW, and environmental variability. CVTot is the total CV from CVm (Model) and CVg0 

derived using the Delta method (see text for details). Log-normal 95% confidence 
intervals (Low and High 95% CIs) apply to abundance estimates. Also shown is the 20th 
percentile for the abundance estimate, corresponding to the “minimum population size 
(Nmin)” as defined in the Guidelines for Assessing Marine Mammal Stocks, and 
calculated as the log-normal 20th percentile of the mean abundance estimate using 
standard formulae. 

 Year 

  1996 2001 2005 2008 2014 2018 

Long-beaked common dolphin     
Abundance 57,623 53,044 52,356 58,624 58,794 83,379 

Density 0.0506 0.0465 0.0459 0.0514 0.0516 0.0732 

CVm (Model) 0.151 0.128 0.146 0.087 0.101 0.140 

CVg0 0.165 0.165 0.165 0.165 0.165 0.165 

CVTot 0.224 0.209 0.220 0.187 0.193 0.216 

Low 95% CI 37,370 35,381 34,170 40,799 40,380 54,823 

High 95% CI 88,851 79,524 80,221 84,236 85,605 126,809 

Nmin 47,841 44,574 43,587 50,170 50,031 69,636 

Short-beaked common dolphin     
Abundance 328,134 391,356 394,610 433,628 880,425 1,056,308 

Density 0.2879 0.3434 0.3462 0.3804 0.7724 0.9267 

CVm (Model) 0.145 0.196 0.139 0.163 0.090 0.125 

CVg0 0.165 0.165 0.165 0.165 0.165 0.165 

CVTot 0.220 0.256 0.216 0.232 0.188 0.207 

Low 95% CI 214,423 238,750 259,781 276,866 611,073 707,020 

High 95% CI 502,146 641,507 599,417 679,148 1,268,504 1,578,155 

Nmin 273,320 316,497 329,739 357,612 752,592 888,971 

Risso’s dolphin      
Abundance 15,761 15,462 12,044 11,657 8,153 8,977 

Density 0.0138 0.0136 0.0106 0.0102 0.0072 0.0079 

CVm (Model) 0.116 0.087 0.123 0.128 0.189 0.190 

CVg0 0.093 0.093 0.093 0.093 0.093 0.093 

CVTot 0.149 0.127 0.154 0.158 0.211 0.212 

Low 95% CI 11,796 12,059 8,918 8,565 5,419 5,957 

High 95% CI 21,060 19,826 16,265 15,865 12,265 13,528 

Nmin 13,916 13,896 10,586 10,211 6,841 7,527 

Pacific white-sided dolphin      
Abundance 37,147 38,533 39,008 37,369 28,901 34,999 

Density 0.0326 0.0338 0.0342 0.0328 0.0254 0.0307 

CVm (Model) 0.230 0.235 0.506 0.323 0.292 0.149 

CVg0 0.165 0.165 0.165 0.165 0.165 0.165 
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CVTot 0.283 0.287 0.532 0.363 0.335 0.222 

Low 95% CI 21,558 22,194 14,657 18,761 15,240 22,756 

High 95% CI 64,010 66,900 103,814 74,432 54,807 53,829 

Nmin 29,404 30,402 25,617 27,794 21,954 29,090 

Northern right whale dolphin       
Abundance 33,893 39,697 27,370 42,767 18,031 29,285 

Density 0.0297 0.0348 0.0240 0.0375 0.0158 0.0257 

CVm (Model) 0.706 0.782 0.445 0.661 0.534 0.698 

CVg0 0.165 0.165 0.165 0.165 0.165 0.165 

CVTot 0.725 0.798 0.475 0.681 0.559 0.717 

Low 95% CI 9,481 10,012 11,314 12,750 6,489 8,284 

High 95% CI 121,158 157,397 66,211 143,454 50,099 103,521 

Nmin 19,608 21,966 18,727 25,428 11,624 17,024 

Striped dolphin      
Abundance 17,758 26,215 47,974 46,563 70,107 29,988 

Density 0.0156 0.0230 0.0421 0.0409 0.0615 0.0263 

CVm (Model) 0.293 0.193 0.357 0.317 0.324 0.282 

CVg0 0.098 0.098 0.098 0.098 0.098 0.098 

CVTot 0.309 0.216 0.370 0.332 0.338 0.299 

Low 95% CI 9,826 17,235 23,765 24,714 36,762 16,913 

High 95% CI 32,093 39,875 96,843 87,727 133,696 53,170 

Nmin 13,772 21,893 35,478 35,470 53,128 23,448 

Common bottlenose dolphin      

Abundance 6,198 5,408 3,855 3,493 5,908 3,477 

Density 0.0054 0.0047 0.0034 0.0031 0.0052 0.0031 

CVm (Model) 0.504 0.357 0.503 0.508 0.510 0.647 

CVg0 0.256 0.256 0.256 0.256 0.256 0.256 

CVTot 0.565 0.439 0.564 0.569 0.571 0.696 

Low 95% CI 2,208 2,374 1,375 1,237 2,087 1,015 

High 95% CI 17,398 12,320 10,806 9,861 16,726 11,915 

Nmin 3,978 3,797 2,476 2,237 3,778 2,048 

Dall’s porpoise      
Abundance 49,811 44,418 36,373 34,654 21,219 16,498 

Density 0.0437 0.0390 0.0319 0.0304 0.0186 0.0145 

CVm (Model) 0.244 0.166 0.178 0.152 0.199 0.319 

CVg0 0.518 0.518 0.518 0.518 0.518 0.518 

CVTot 0.573 0.544 0.548 0.540 0.555 0.608 

Low 95% CI 17,541 16,376 13,328 12,861 7,686 5,493 

High 95% CI 141,452 120,481 99,264 93,374 58,580 49,554 

Nmin 31,813 28,933 23,630 22,637 13,717 10,286 

Sperm whale      
Abundance 2,783 2,896 2,691 2,869 2,656 2,606 

Density 0.0024 0.0025 0.0024 0.0025 0.0023 0.0023 

CVm (Model) 0.078 0.109 0.111 0.090 0.186 0.135 



 

27 

CVg0 0.285 0.285 0.285 0.285 0.285 0.285 

CVTot 0.295 0.305 0.306 0.299 0.340 0.315 

Low 95% CI 1,578 1,614 1,497 1,617 1,388 1,425 

High 95% CI 4,907 5,197 4,836 5,090 5,082 4,765 

Nmin 2,181 2,253 2,092 2,243 2,010 2,011 

Minke whale      
Abundance 847 812 819 804 1,062 915 

Density 0.0007 0.0007 0.0007 0.0007 0.0009 0.0008 

CVm (Model) 0.139 0.110 0.110 0.113 0.109 0.085 

CVg0 0.787 0.787 0.787 0.787 0.787 0.787 

CVTot 0.799 0.795 0.795 0.795 0.795 0.792 

Low 95% CI 214 206 208 204 270 233 

High 95% CI 3,358 3,200 3,227 3,170 4,184 3,590 

Nmin 469 451 454 446 589 509 

Blue whale      
Abundance 1,946 1,657 1,042 919 1,077 670 

Density 0.0017 0.0015 0.0009 0.0008 0.0009 0.0006 

CVm (Model) 0.224 0.139 0.149 0.227 0.273 0.299 

CVg0 0.309 0.309 0.309 0.309 0.309 0.309 

CVTot 0.382 0.339 0.343 0.383 0.412 0.430 

Low 95% CI 945 868 542 445 495 299 

High 95% CI 4,009 3,162 2,004 1,899 2,342 1,502 

Nmin 1,427 1,255 787 673 771 474 

Fin whale      
Abundance 3,804 5,733 7,319 7,606 10,139 11,065 

Density 0.0033 0.0050 0.0064 0.0067 0.0089 0.0097 

CVm (Model) 0.200 0.212 0.250 0.303 0.175 0.333 

CVg0 0.230 0.230 0.230 0.230 0.230 0.230 

CVTot 0.305 0.313 0.340 0.381 0.289 0.405 

Low 95% CI 2,120 3,149 3,828 3,699 5,817 5,156 

High 95% CI 6,826 10,439 13,994 15,640 17,672 23,747 

Nmin 2,959 4,432 5,540 5,580 7,986 7,970 

Humpback whale      
Abundance 1,181 1,364 1,575 1,727 2,178 4,784 

Density 0.0010 0.0012 0.0014 0.0015 0.0019 0.0042 

CVm (Model) 0.147 0.081 0.113 0.175 0.271 0.118 

CVg0 0.283 0.283 0.283 0.283 0.283 0.283 

CVTot 0.319 0.294 0.305 0.333 0.392 0.307 

Low 95% CI 642 775 878 915 1,038 2,658 

High 95% CI 2,173 2,400 2,824 3,259 4,568 8,609 

Nmin 909 1,070 1,226 1,315 1,584 3,717 

Baird’s beaked whale      
Abundance 739 730 590 681 977 1,363 

Density 0.0006 0.0006 0.0005 0.0006 0.0009 0.0012 
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CVm (Model) 0.458 0.434 0.628 0.521 0.423 0.422 

CVg0 0.326 0.326 0.326 0.326 0.326 0.326 

CVTot 0.562 0.543 0.708 0.615 0.534 0.533 

Low 95% CI 265 270 169 225 366 511 

High 95% CI 2,064 1,976 2,057 2,065 2,608 3,634 

Nmin 475 476 345 423 641 894 

Small beaked whale guild      
Abundance 4,979 5,701 4,399 5,088 4,670 4,989 

Density 0.0044 0.0050 0.0039 0.0045 0.0041 0.0044 

CVm (Model) 0.153 0.113 0.213 0.201 0.188 0.211 

CVg0 0.438 0.438 0.438 0.438 0.438 0.438 

CVTot 0.464 0.452 0.487 0.482 0.477 0.486 

Low 95% CI 2,096 2,447 1,781 2,078 1,924 2,023 

High 95% CI 11,830 13,281 10,866 12,461 11,336 12,306 

Nmin 3,433 3,964 2,983 3,463 3,191 3,385 
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Table 5. Arithmetic mean of the model-predicted 2014 and 2018 estimates of abundance 
and density (animals km-2) within the CCE study area. The corresponding coefficient of 
variation (CVTot) is the total CV from four sources: environmental variability, GAM 
parameters, ESW, and g(0) (see text for details). Log-normal 95% confidence intervals 
(Low and High 95% CIs) apply to abundance estimates. Also shown is the 20th percentile 
for the abundance estimate, corresponding to the “minimum population size (Nmin)” as 
defined in the Guidelines for Assessing Marine Mammal Stocks, and calculated as the 
log-normal 20th percentile of the mean abundance estimate using standard formulae. 

Species Abundance Density CVTot Low 95% CI High 95% CI Nmin 

Long-beaked common dolphin  
   

 71,087 0.0624 0.190 49,156 102,803 60,669 

Short-beaked common dolphin  
   

 968,367 0.8496 0.192 667,050 1,405,792 825,082 

Risso's dolphin   
 

   

 8,565 0.0075 0.209 5,713 12,841 7,197 

Pacific white-sided dolphin  
   

 31,950 0.0280 0.249 19,769 51,636 25,996 

Northern right whale dolphin   
   

 23,658 0.0208 0.612 7,836 71,428 14,717 

Striped dolphin   
 

   

 50,048 0.0439 0.314 27,454 91,237 38,668 

Common bottlenose dolphin  
   

 4,693 0.0041 0.407 2,177 10,117 3,374 

Dall’s porpoise   
 

   

 18,859 0.0165 0.562 6,750 52,693 12,129 

Sperm whale   
 

   

 2,631 0.0023 0.324 1,415 4,891 2,016 

Minke whale       

 986 0.0009 0.793 251 3,874 548 

Blue whale   
 

   

 874 0.0008 0.396 414 1,845 634 

Fin whale   
 

   

 10,602 0.0093 0.328 5,670 19,824 8,103 

Humpback whale  
 

   

 3,481 0.0031 0.320 1,888 6,417 2,677 

Baird’s beaked whale  
 

   

 1,170 0.0010 0.501 463 2,956 786 

Small beaked whale guild  
 

   

 4,830 0.0042 0.481 1,976 11,804 3,290 
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Figures 

 

Figure 1. Completed transects for the Southwest Fisheries Science Center systematic 
ship surveys conducted between 1991 and 2018 in the California Current Ecosystem 
study area. The lines (green = 1991–2014 surveys, red=2018 survey) show on-effort 
transect coverage in Beaufort sea states of 0-5. 
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Figure 2a-b. Predicted mean density (animals km-2) and associated coefficients of 
variation (CV) from the 1991–2018 habitat-based density models for (a) long-beaked 
common dolphin, and (b) short-beaked common dolphin. Panels show the multi-year 
average density based on predicted daily cetacean species densities covering the 1996-
2018 survey periods (summer/fall). Predictions are shown for the study area (1,141,800 
km2). White dots in the average plots show actual sighting locations from the SWFSC 
1996-2018 summer/fall ship surveys for the respective species.  
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Figure 2c-d. Predicted mean density (animals km-2) and associated coefficients of 
variation (CV) from the 1991–2018 habitat-based density models for (c) Risso’s dolphin, 
and (d) Pacific white-sided dolphin. Panels show the multi-year average density based on 
predicted daily cetacean species densities covering the 1996-2018 survey periods 
(summer/fall). Predictions are shown for the study area (1,141,800 km2). White dots in the 
average plots show actual sighting locations from the SWFSC 1996-2018 summer/fall 
ship surveys for the respective species.  
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Figure 2e-f. Predicted mean density (animals km-2) and associated coefficients of 
variation (CV) from the 1991–2018 habitat-based density models for (e) northern right 
whale dolphin, and (f) striped dolphin. Panels show the multi-year average density based 
on predicted daily cetacean species densities covering the 1996-2018 survey periods 
(summer/fall). Predictions are shown for the study area (1,141,800 km2). White dots in the 
average plots show actual sighting locations from the SWFSC 1996-2018 summer/fall 
ship surveys for the respective species.  
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Figure 2g-h. Predicted mean density (animals km-2) and associated coefficients of 
variation (CV) from the 1991–2018 habitat-based density models for (g) common 
bottlenose dolphin, and (h) Dall’s porpoise. Panels show the multi-year average density 
based on predicted daily cetacean species densities covering the 1996-2018 survey 
periods (summer/fall). Predictions are shown for the study area (1,141,800 km2). White 
dots in the average plots show actual sighting locations from the SWFSC 1996-2018 
summer/fall ship surveys for the respective species.  
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Figure 2i-j. Predicted mean density (animals km-2) and associated coefficients of variation 
(CV) from the 1991–2018 habitat-based density models for (i) sperm whale, and (j) minke 
whale. Panels show the multi-year average density based on predicted daily cetacean 
species densities covering the 1996-2018 survey periods (summer/fall). Predictions are 
shown for the study area (1,141,800 km2). White dots in the average plots show actual 
sighting locations from the SWFSC 1996-2018 summer/fall ship surveys for the 
respective species.  
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Figure 2k-l. Predicted mean density (animals km-2) and associated coefficients of 
variation (CV) from the 1991–2018 habitat-based density models for (k) blue whale, and (l) 
fin whale. Panels show the multi-year average density based on predicted daily cetacean 
species densities covering the 1996-2018 survey periods (summer/fall). Predictions are 
shown for the study area (1,141,800 km2). White dots in the average plots show actual 
sighting locations from the SWFSC 1996-2018 summer/fall ship surveys for the 
respective species.  
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Figure 2m-n. Predicted mean density (animals km-2) and associated coefficients of 
variation (CV) from the 1991–2018 habitat-based density models for (m) humpback whale, 
and (n) Baird’s beaked whale. Panels show the multi-year average density based on 
predicted daily cetacean species densities covering the 1996-2018 survey periods 
(summer/fall). Predictions are shown for the study area (1,141,800 km2). White dots in the 
average plots show actual sighting locations from the SWFSC 1996-2018 summer/fall 
ship surveys for the respective species.  
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Figure 2o. Predicted mean density (animals km-2) and associated coefficients of variation 
(CV) from the 1991–2018 habitat-based density models for (o) small beaked whale guild. 
Panels show the multi-year average density based on predicted daily cetacean species 
densities covering the 1996-2018 survey periods (summer/fall). Predictions are shown for 
the study area (1,141,800 km2). White dots in the average plots show actual sighting 
locations from the SWFSC 1996-2018 summer/fall ship surveys for the respective 
species.  
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Figure 3a. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for long-
beaked common dolphin. Panels show the yearly average density based on predicted 
daily long-beaked common dolphin densities covering the 1996-2018 survey periods 
(summer/fall). Predictions are shown for the study area (1,141,800 km2). White dots in the 
average plots show actual sighting locations from the respective SWFSC summer/fall 
ship surveys.  
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Figure 3b. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for short-
beaked common dolphin. Panels show the yearly average density based on predicted 
daily short-beaked common dolphin densities covering the 1996-2018 survey periods 
(summer/fall). Predictions are shown for the study area (1,141,800 km2). White dots in the 
average plots show actual sighting locations from the respective SWFSC summer/fall 
ship surveys.  
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Figure 3c. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for 
Risso’s dolphin. Panels show the yearly average density based on predicted daily 
Risso’s dolphin densities covering the 1996-2018 survey periods (summer/fall). 
Predictions are shown for the study area (1,141,800 km2). White dots in the average plots 
show actual sighting locations from the respective SWFSC summer/fall ship surveys.  
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Figure 3d. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for 
Pacific white-sided dolphin. Panels show the yearly average density based on predicted 
daily Pacific white-sided dolphin densities covering the 1996-2018 survey periods 
(summer/fall). Predictions are shown for the study area (1,141,800 km2). White dots in the 
average plots show actual sighting locations from the respective SWFSC summer/fall 
ship surveys.  
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Figure 3e. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for 
northern right whale dolphin. Panels show the yearly average density based on predicted 
daily northern right whale dolphin densities covering the 1996-2018 survey periods 
(summer/fall). Predictions are shown for the study area (1,141,800 km2). White dots in the 
average plots show actual sighting locations from the respective SWFSC summer/fall 
ship surveys.  
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Figure 3f. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for 
striped dolphin. Panels show the yearly average density based on predicted daily striped 
dolphin densities covering the 1996-2018 survey periods (summer/fall). Predictions are 
shown for the study area (1,141,800 km2). White dots in the average plots show actual 
sighting locations from the respective SWFSC summer/fall ship surveys.  
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Figure 3g. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for 
common bottlenose dolphin. Panels show the yearly average density based on predicted 
daily common bottlenose dolphin densities covering the 1996-2018 survey periods 
(summer/fall). Predictions are shown for the study area (1,141,800 km2). White dots in the 
average plots show actual sighting locations from the respective SWFSC summer/fall 
ship surveys.  
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Figure 3h. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for Dall’s 
porpoise. Panels show the yearly average density based on predicted daily Dall’s 
porpoise densities covering the 1996-2018 survey periods (summer/fall). Predictions are 
shown for the study area (1,141,800 km2). White dots in the average plots show actual 
sighting locations from the respective SWFSC summer/fall ship surveys.  
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Figure 3i. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for sperm 
whale. Panels show the yearly average density based on predicted daily sperm whale 
densities covering the 1996-2018 survey periods (summer/fall). Predictions are shown for 
the study area (1,141,800 km2). White dots in the average plots show actual sighting 
locations from the respective SWFSC summer/fall ship surveys.  
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Figure 3j. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for minke 
whale. Panels show the yearly average density based on predicted daily minke whale 
densities covering the 1996-2018 survey periods (summer/fall). Predictions are shown for 
the study area (1,141,800 km2). White dots in the average plots show actual sighting 
locations from the respective SWFSC summer/fall ship surveys.  
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Figure 3k. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for blue 
whale. Panels show the yearly average density based on predicted blue whale densities 
covering the 1996-2018 survey periods (summer/fall). Predictions are shown for the study 
area (1,141,800 km2). White dots in the average plots show actual sighting locations from 
the respective SWFSC summer/fall ship surveys.  

 



 

50 

 

Figure 3l. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for fin 
whale. Panels show the yearly average density based on predicted fin whale densities 
covering the 1996-2018 survey periods (summer/fall). Predictions are shown for the study 
area (1,141,800 km2). White dots in the average plots show actual sighting locations from 
the respective SWFSC summer/fall ship surveys.  
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Figure 3m. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for 
humpback whale. Panels show the yearly average density based on predicted humpback 
whale densities covering the 1996-2018 survey periods (summer/fall). Predictions are 
shown for the study area (1,141,800 km2). White dots in the average plots show actual 
sighting locations from the respective SWFSC summer/fall ship surveys.  

 



 

52 

 

Figure 3n. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for 
Baird’s beaked whale. Panels show the yearly average density based on predicted 
Baird’s beaked whale densities covering the 1996-2018 survey periods (summer/fall). 
Predictions are shown for the study area (1,141,800 km2). White dots in the average plots 
show actual sighting locations from the respective SWFSC summer/fall ship surveys.  
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Figure 3o. Predicted annual (1996-2018) mean density (animals km-2) and associated 
coefficients of variation (CV) from the 1991–2018 habitat-based density models for the 
small beaked whale guild (Mesoplodonts and Cuvier’s beaked whale). Panels show the 
yearly average density based on predicted small beaked whale guild densities covering 
the 1996-2018 survey periods (summer/fall). Predictions are shown for the study area 
(1,141,800 km2). White dots in the average plots show actual sighting locations from the 
respective SWFSC summer/fall ship surveys.  
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Appendix A: SDM functional plots 

Final SDM response curves for (1) long-beaked common dolphin, (2) short-beaked common 

dolphin, (3) Risso’s dolphin, (4), Pacific white-sided dolphin, (5) northern right whale dolphin, 

(6) striped dolphin, (7) common bottlenose dolphin, (8) sperm whale, (9) minke whale, (10) blue 

whale, (11) fin whale, (12) humpback whale, (13) Baird’s beaked whale, and (14) the small 

beaked whale guild (Mesoplondon spp. and Cuvier’s beaked whale). The suite of environmental 

and geographic covariates included: SST = sea surface temperature, sdSST = standard deviation 

of SST, MLD = mixed layer depth, SSH = sea surface height, sdSSH = standard deviation of 

SSH, depth = bathymetric depth, dShelf = distance to the 200m isobath, d2000 = distance to the 

2,000m isobath, mlat = latitude, mlon = longitude, and yearCoVar = year. Models were 

constructed with both linear terms and smoothing splines. Degrees of freedom for single 

variables are shown in the parentheses on the y-axis. Variables for the interaction terms are 

shown on the x- and y-axes. For single variables the y-axes represent the term’s (linear or spline) 

function. Zero on the y-axes corresponds to no effect of the predictor variable on the estimated 

response variable. Scaling of y-axis varies among predictor variables to emphasize model fit. 

The shading reflects 2x standard error bands (i.e., 95% confidence interval); tick marks (‘rug 

plot’) above the X axis show data values. For the interaction terms, yellow indicates higher 

prediction densities and red lower predicted densities. 
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Figure A 1. Functional plot for long-beaked common dolphin (Delphinus delphis bairdii) 
encounter rate model. 
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Figure A 2.  Functional plot for short-beaked common dolphin (Delphinus delphis 
delphis) encounter rate model. 
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Figure A 3. Functional plot for Risso’s dolphin (Grampus griseus) model.
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Figure A 4. Functional plot for Pacific white-sided dolphin (Lagenorhynchus obliquidens) 
model. 
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Figure A 5. Functional plot for northern right whale dolphin (Lissodelphis borealis) 
model. 
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Figure A 6. Functional plot for striped dolphin (Stenella coeruleoalba) model. 
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Figure A 7. Functional plot for common bottlenose dolphin (Tursiops truncatus) model. 

 



 

62 

Figure A 8. Functional plot for Dall’s porpoise (Phocoenoides dalli) model. 
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Figure A 9. Functional plot for sperm whale (Physeter macrocephalus) model. 
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Figure A 10. Functional plot for minke whale (Balaenoptera acutorostrata) model. 
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Figure A 11. Functional plot for blue whale (Balaenoptera musculus) model. 
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Figure A 12. Functional plot for fin whale (Balaenoptera physalus) model. 
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Figure A 13. Functional plot for fin whale (Megaptera novaeangliae) model. 
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Figure A 14. Functional plot for Baird’s beaked whale (Berardius bairdii) model. 
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Figure A 15. Functional plot for the small beaked whale guild (Mesoplondon spp. & 
Ziphius cavirostris) model. 
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